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Abstract

This paper studies strategic communication in the context of social learning. Product reviews

are used by consumers to learn product quality, but in order to write a review, a consumer must

be convinced to purchase the item first. When reviewers care about welfare of future consumers,

this leads to a conflict: a reviewer today wants the future consumers to purchase the item even

when this comes at a loss to them, so that more information is revealed for the consumers that

come after. We show that due to this conflict, communication via reviews is inevitably noisy

in this setting, regardless of whether the reviewers can commit to a communication strategy or

have to resort to cheap talk. We further show that in the latter case, the communication must

necessarily have the interval structure, meaning that the noise persists even when the conflict

between the reviewers and future consumers vanishes.
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1 Introduction

Whenever information is dispersed in the society, the question of social learning arises: can the

society aggregate this information and achieve an efficient outcome for its members? In recent times,

online customer reviews have become a powerful tool of social learning: according to multiple surveys

of internet users, at least a half of respondents use ratings and online reviews “always” or “often” to

inform their purchasing decisions, and most respondents find reviews to be at least “mostly reliable”

(Competition & Markets Authority [2015], Mintel [2015], eMarketer [2018]). Curiously, only about

10% of respondents to one of the aforementioned surveys say that they find product reviews “very

reliable” (eMarketer [2018]). This skepticism can arise due to a variety of reasons, which mostly

include various ways in which sellers can meddle with reviews, such as censorship and fake reviews.1

However, in this paper we show that even in the absence of any intervention from sellers, reviews

can get noisy organically.

To understand the source of this noise, which stems from how customers write reviews, one

must first ask why customers write reviews. Surveys consistently produce a few modal answers

to this question, with one of the most popular ones being “to help other consumers” (Trustpilot

[2018]). Caring about other consumers making the right choice is often a sufficient incentive for

people to spend their time and effort writing a review. These altruistic concerns, however, seem

to only appear ex post – after the consumer has purchased and consumed the product – rather

than ex ante. In particular, when choosing which product to buy, the consumers appear to focus

primarily on their own expected utility from consumption, rather than on their desire to provide

helpful information to others.

This inconsistency in altruism, as we show, must lead to noise in product reviews. When

product quality is uncertain, purchases have an informational externality, since in addition to direct

consumption utility they allow informative reviews to be written, which allow future consumers to

make more efficient decisions. However, when deciding on the purchase, a self-interested consumer

does not internalize this information-generating effect, and so their private expected value from

buying a product is always lower than social value. This discrepancy is, in turn, recognized by an

altruistic reviewer, who may in some circumstances want to mislead a future consumer into buying

a product when it is not individually optimal to do so.

We formalize the argument above in a model of product reviews, in which a sequence of

consumers decide whether to buy a product of some uncertain quality and, if they do, what kind of

review to write about their experience. A consumer in our model only purchases the product if her

expected consumption utility warrants this. The realized utility is informative about the product

quality. The consumer can leave a review describing her consumption experience, and when doing

so she wishes to maximize welfare of consumers that arrive at the market after her.

The myopic behavior at the purchasing stage and the altruistic desire to induce some

experimentation with the product at the reviewing stage conflict with each other. We show that

this conflict creates noise in communication through reviews. Instead of reporting their experiences

truthfully, the consumers obfuscate their reviews to foster experimentation. This is true regardless

of whether consumers can commit to some communication strategy (which should be interpreted

1See, e.g., Luca and Zervas [2016] for an exploration of the effects of fake reviews and Smirnov and Starkov [2018]
for a model of censorship in product reviews.
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as a shared social norm among consumers) or not. In the latter case, every consumer leaves a

review they believe to be socially optimal given their experience. This scenario produces even more

interesting results.

In particular, we show that if a consumer cannot commit to a communication strategy, then

despite the conflict arising only in a special set of circumstances – when the product is believed to

be good enough to experiment with socially, but not good enough to buy just for the sake of doing

so, – we show that the effects of this conflict propagate and distort communication in other cases

as well. More specifically, communication must then take the interval structure known in the cheap

talk literature, when senders with similar private beliefs pool on the same message.

Two conclusions may be drawn from our results. Firstly, coarse categories in product reviews

(such as one- to five-star ratings) are almost sufficient for information transmission in the presence

of the aforementioned experimentation conflict. Allowing free-form reviews in addition to – or

instead of – such ratings will not significantly increase the amount of information available to

future consumers (unless the original categories were too coarse). Secondly, our paper provides a

possible explanation for inflation in product reviews, namely that reviews are inflated in order to

deceive future consumers into purchasing the product they would not have bought otherwise. This

complements other possible explanations, including positive ratings being sponsored or just fake.

Contrary to those explanations, in our case inflation arises endogenously as a result of interaction

between consumers, with no intervention from the firm whatsoever.

This paper contributes to the social learning literature. A lot of the existing literature has

focused on non-strategic learning in local settings, such as networks. This is driven by recognition

that we as consumers receive a lot of our information second-hand, so it may be distorted by other

agents’ perceptions and beliefs. In turn, the part of the literature that deals with strategic learning

has mostly focused on strategic information acquisition, forcing the agent with a limited learning

capacity to choose their information sources carefully. Our paper focuses instead on social learning

with strategic information provision. For a detailed literature review, see below.

The paper is organized as follows. Section 2 contains a review of the relevant literature. In

Section 3 we formulate the general version of the model. Section 4 presents the main result – that

no perfect communication is possible in our setting – and explains the intuition behind it. Sections 5

and 6 then discuss what communication structures can arise in our model, with Section 5 exploring

an illustrative three-period example, and Section 6 generalizing the insights to an infinite-horizon

problem. Section 7 concludes. All proofs are relegated to the Appendix.

2 Literature Review

The current paper mainly contributes to two strands of literature: social learning and dynamic

cheap talk.

The literature on social learning is vast. Our paper is closest to the literature on herding

and cascades in sequential learning (Banerjee [1992], Bikhchandani, Hirshleifer, and Welch [1992],

Smith and Sørensen [2000]). In these models the agents choose actions which are payoff-relevant

for agents themselves and, at the same time, signal their private information to subsequent agents.

Smith and Sørensen [2011] provide an excellent overview of the topic. The most recent general

treatment of the setting is provided by Xu [2018]. Most relevant are works by Ali and Kartik
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[2012] and Smith, Sørensen, and Tian [2017], who consider sequential observational learning with

others-regarding preferences. However, in the observational learning framework agents receive

private information and act on it; actions are the only source of information for future agents who

observe neither past signals, nor past outcomes, while our paper explores learning under strategic

communication. Wolitzky [2018], in contrast, considers sequential learning when players observe

outcomes of previous players, but not their actions. This is closer to our paper, except outcomes

in our model are observed through noisy communication rather than directly. Ali [2018] studies

observational learning with costly information acquisition.

Social learning with strategic information provision was explored by Swank and Visser [2015]

when the conflict arises from senders’ career concerns. Liang and Mu [2019] consider a model where

agents can, similarly to our paper, be tempted by exploiting myopic benefits which prevents future

generations from learning the state correctly. Au [2019] presents a model of (non-social) learning,

in which experts’ recommendations to the agent are distorted even despite the seeming absence of

conflict between the parties.

A separate strand of the social learning literature focuses exclusively on learning

from customer reviews (e.g., Acemoglu, Makhdoumi, Malekian, and Ozdaglar [2017] and

Vaccari, Maglaras, and Scarsini [2018]).

The decentralized literature of decision-making and communication in our model relates us

to literature on social learning on networks, which are inherently decentralized. Lobel and Sadler

[2015] and Arieli and Mueller-Frank [2019] study sequential social learning when agents are arranged

in a network or into an m-dimensional integer lattice, respectively. Campbell [2013] explores

pricing and advertising in networks of friends who learn via word-of-mouth communication.

Galeotti, Ghiglino, and Squintani [2013], Schopohl [2017] and Foerster [2019] analyze various games

of strategic information transmission in networks. Migrow [2018] studies how a manager should

design a communication network in an organization to optimally elicit the information from

employees. The conflicts explored in these papers are different from what we focus on in this

paper.

Literature on the design of social learning considers the information structures that

incentivize short-lived agent to experiment for the sake of society. Notable references include

Kremer, Mansour, and Perry [2014], Che and Hörner [2018], Mansour, Slivkins, and Syrgkanis

[2019], and Cohen and Mansour [2019].2 We explore what effectively is a decentralized version

of these models, with each agent trying to communicate in a way so as to create optimal

experimentation incentives, but lacking the commitment power and memory of a single principal.3

Our paper models communication via cheap talk a là Crawford and Sobel [1982]. Other models

(apart from ours) of sequential communication include Ambrus, Azevedo, and Kamada [2013],

Renault, Solan, and Vieille [2013], and Chiba [2018]. Le Quement and Patel [2018] explore cheap

talk with preferences for reciprocity.

Our model presents consumers as altruistic when they are writing reviews. It has been argued

for a long time that the economic model of homo economicus as a self-interested agent does not fully

2Optimal experimentation by a group of long-lived agents with incentives for free-riding was stud-
ied by Bolton and Harris [1999], Keller, Rady, and Cripps [2005], and Hörner, Klein, and Rady [2015].
Heidhues, Rady, and Strack [2015] move from observable to private payoffs and explore communication in this setting.

3We also consider the case when consumers can commit to a specific message structure.
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capture real-world behavior, which often exhibits regard for others. Various classical explanations

are Andreoni [1990] (impure altruism), Fehr and Schmidt [1999] (inequality aversion) and Becker

[1974] (pure altruism). The literature is surveyed in Fehr and Schmidt [2003], Konow [2003], and

Meier [2006]. More recently, an attempt to provide an axiomatic foundation for such preferences

has been made by Galperti and Strulovici [2017].

Within the context of social learning, experiments by March and Ziegelmeyer [2016] and

Peng, Rao, Sun, and Xiao [2017] find evidence of altruistic motives when testing standard models

of observational learning.

3 The Model

3.1 Primitives

Time is discrete and infinite: t ∈ {1, 2, . . . , }. All agents share a common discount factor β < 1.

Seller. There is a single long-lived seller, who offers for sale a single product that he has in infinite

supply. Product quality θ, which represents the average consumption utility of the product, can be

either low or high: θ ∈ {L,H}, with 0 6 L < H. The price of the product is fixed at c > 0; to

avoid triviality we assume that L < c < H.

Consumers. Each period a single short-lived risk-neutral consumer arrives at the market. The

consumer can either purchase the good at cost c or leave the market forever, receiving the reservation

utility normalized to 0. In case of purchase, the consumer receives random consumption utility s,

distributed according to quality-contingent cdf F θ with mean θ and respective pdf fθ. We assume

that both FL and FH have full support on the same open interval S = (s, s) ⊆ R.4 Both measures

are absolutely continuous on S, and their respective densities are continuously differentiable and

bounded from above. In addition, we assume that MLRP holds:

Assumption (MLRP). Ratio fH(s)
fL(s)

is a strictly increasing and continuous function of s on S.

Moreover, lim
s→s

fH(s)
fL(s)

= 0, and lim
s→s

fH(s)
fL(s)

= +∞.5

The consumer does not observe product quality θ, so her purchasing decision is based on her

belief p = P(θ = H). In particular, the consumer purchases the product if and only if her expected

consumption utility exceeds the cost of purchase:

θ(p) := Hp+ L(1− p) > c ⇔ p > p̄,

where p̄ := c−L
H−L

.6 This purchasing strategy will be taken as given in what follows.

Reviews. If the good was purchased, the consumer then sends a cheap talk message m ∈ M

(writes a review) to subsequent consumers, describing her experience with the product. The message

4Here s = −∞ and s = +∞ are both admissible values.
5Also note that MLRP implies that FH first order stochastically dominates FL.
6We assume that the consumer purchases the product when indifferent.

5



set M is assumed to be arbitrarily rich, with [0, 1] ⊆ M. When leaving a review, the consumer

maximizes the expected discounted sum of consumption utilities of all future consumers.

We consider two regimes. Under the commitment regime a consumer can commit to some

utility-contingent reporting strategy (s, s) → M before a purchase. The interpretation of this

regime is that there exists a welfare-maximizing social norm, which prescribes the mapping from

experiences to reviews. Under the no commitment regime, the consumer chooses m after observing

her consumption utility s. The latter regime is also referred to as the decentralized scenario.

Timing. Within a given period, the order of events is as follows:

1. Time-t consumer arrives at the market and observes all past reviews (m1,m2, . . . ,mt−1) and

forms belief pt about the quality of the product.

2. The consumer decides whether to purchase the product at cost c or not.

3. After a purchase she receives random consumption utility st ∼ F θ and updates her belief

about the product quality.

4. After a purchase the consumer leaves review mt about her experience observable to all

subsequent consumers. A consumer who has not purchased the product leaves no review:

mt = ∅.7

3.2 Histories and State Variables

Review history Rt := (m1,m2, . . . ,mt−1) is a tuple consisting of all messages sent by consumers

before period t. It constitutes the public history at the beginning of period t. We denote the public

belief about the quality of the product as pt := P(θ = H | Rt). The prior p1 = P(θ = H|∅) is

exogenously fixed and commonly agreed upon.

The private posterior belief of time-t consumer in case she purchased and consumed the product

is denoted by bt := P(θ = H | Rt, st). Given pt and st we can compute bt as

bt =
ptf

H(st)

ptfH(st) + (1− pt) fL(st)
. (1)

Let µθ(bt | pt) denote the cdf of a distribution of bt induced by st conditional on pt and true state

θ.8

The belief pt contains all payoff-relevant information available to time-t consumer at the time she

decides whether to purchase the product. The pair of beliefs pt and bt summarizes all payoff-relevant

information available to time-t consumer when she decides which message to send to subsequent

consumers. In what follows, we will focus on a setting, in which we treat belief pt and current time

t as a sufficient statistic of the review history Rt.
9 Because of this, we call the tuple (pt, bt, t) the

7For simplicity, we assume that ∅ /∈ M, i.e., a purchasing consumer cannot stay silent and must leave a meaningful
review.

8It can be computed explicitly: µθ(bt | pt) = F θ
(

l−1
(

ln
(

bt
1−bt

)

− ln
(

pt
1−pt

)))

, where l−1 is an inverse function

to ln
[

fH (s)

fL(s)

]

.
9This is not without loss: if two time-t review histories produce the same pt, they will be treated as equivalent.

This would preclude the possibility of having different continuation equilibria after the two histories.
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private state of time-t consumer, and we refer to (pt, t) as the time-t public state. We will typically

omit t from the description of states, given that it can be inferred from belief indexing.

Given that the consumers’ purchasing decisions are myopic and described by “buy iff

pt > p̄”, from this point onward we will be focusing on consumers’ communication strategies.

The time-t consumer’s behavioral strategy is r, where r(m|pt, bt) is the probability with

which the time-t consumer sends message m ∈ M in private state (pt, bt). Let M(pt) =

{m ∈ M | ∃ bt : r(m | pt, bt) > 0}. Then the public belief pt+1 induced by message m ∈ M(pt)

is given by

pt+1 = q(pt,m) :=

pt ·
1́

0

r(m|pt, bt)dµ
H(bt|pt)

pt ·
1́

0

r(m|pt, bt)dµH(bt|pt) + (1− pt) ·
1́

0

r(m|pt, bt)dµL(bt|pt)

. (2)

We let P(pt) = {q(pt,m) | m ∈ M(pt)} denote the set of all posteriors which are induced

by time-t consumer in equilibrium. We partition this set into S(pt) ∪ E(pt) = P(pt). Here

E(pt) = {q ∈ P(pt) | q > p̄} includes all posteriors for which the next consumer purchases the

product, while S(pt) = {q ∈ P(pt) | q < p̄} contains all posteriors which deter the next consumer

from the purchase. Note that if pt > p̄ then E(pt) 6= ∅, as the public belief pt is a martingale.

Further, note that if pt < p̄ then the market shuts down: time-t consumer does not purchase the

product, does not write a review, hence at t+1 the next consumer has exactly the same information

at the time she makes her purchasing decision (i.e., pt+1 = pt) and does not purchase the product

either. Therefore, all q ∈ S(pt) are equivalent in the sense of shutting the market down. Hereinafter

we will without loss only consider a representative element of S(pt) whenever it is nonempty.

3.3 Maximization Problem

When a consumer sends message m at private state (pt, bt) and induces public belief pt+1 = q,

her value (the discounted sum of future consumers’ utilities) from doing so is equal to

V (q | pt, bt) := E





+∞
∑

j=t+1

βj−t−1 · I (pj > p̄) · sj

∣

∣

∣

∣

pt+1 = q



 . (3)

The expectation is taken over all future histories that start with public belief pt+1 = q. Implicit in

(3) is the correlation between future sj and future pj stemming from future consumers’ equilibrium

strategies. Maximizing (3) over all available messages, we get the consumer’s optimal value in

private state (pt, bt):

V (pt, bt) = max
p∈P(pt)

V (p | pt, bt).
10

For a given equilibrium, the time-t consumer’s ex ante expected continuation value conditional

10This representation implies that the consumer chooses a message from M(pt) rather than M. This is a simplifying
assumption: we do not allow to send out-of-equilibrium messages so that we do not have to keep track of beliefs after
such messages. This restriction is without loss.
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on public belief pt is given by

V (pt) := E [V (pt, bt)] = pt ·

1
ˆ

0

V (pt, bt)dµ
H(bt|pt) + (1− pt) ·

1
ˆ

0

V (pt, bt)dµ
L(bt|pt).

When talking about values, we will use superscripts C or D to distinguish commitment and no-

commitment (decentralized) solutions.

3.4 Equilibrium Definition

We are looking for Perfect Bayesian Equilibria of the game, which consist of a strategy profile

r(m|pt, bt) and updating rules for beliefs pt and bt such that

Belief Consistency: (1) holds at all private histories (pt, bt), and (2) holds after all pt and

m ∈ M(pt);

C-Optimality: For commitment regime: r(m | pt, bt) is chosen so as to maximize V C(pt) for all

pt;

D-Optimality: For decentralized regime: if m ∈ M(pt) and r(m | pt, bt) > 0 then V D(pt, bt) =

V D(q(pt,m) | pt, bt).

Belief consistency condition ensures that consumers use Bayes’ rule whenever possible to update

their belief. C-Optimality states that in the commitment scenario, the consumer chooses a mapping

from private belief bt to messages (conditional on pt and subject to Belief Consistency) so as to

maximize the ex ante value. In the decentralized game, D-Optimality requires that the consumer

maximizes her ex post value (after learning st).

4 No Perfect Communication

This section demonstrates the main idea of this paper: that truth-telling is neither an optimal

social “norm” for writing reviews (i.e., it’s not a commitment solution), nor it is an equilibrium

in the decentralized market. This conclusion is driven by the implicitly lexicographic nature of

consumers’ preferences. When buying the product, a consumer maximizes own expected utility, but

when writing a review, she cares about all future generations. The consumer can thus be represented

as having lexicographic preferences: the first-order preference is for own well-being, while the warm

glow from social welfare is second-order. The consumer is thus unwilling to sacrifice her consumption

utility for sake of the society. This creates a conflict, since time-t consumer would like the consumer

at t + 1 to conduct socially efficient experimentation, possibly by buying the product even when

it is not myopically optimal, so that more information about product quality is generated. This

conflict introduces noise into communication between the two generations of consumers, i.e., into

the review of time-t consumer.

To formulate the result, we first need to introduce the notion of a cascade. Cascades are

prominent in the observational learning literature, where this label is used whenever the society

gets locked into one of the available alternatives (possibly at a loss to efficiency). We use it in the

same context.
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Definition. Message m ∈ E(p(Rt)) at public history Rt starts a cascade if p(Rs) > p̄ for all

Rs = (Rt,m, . . .).

In other words, we say that a recommendation to purchase issued at Rt leads to all future

consumers buying the product, regardless of any of the interim consumers’ experiences and reviews.

Once a cascade starts, no new reviews can change the consumers’ behavior. There are two things

to note in relation to cascades. First, any message m ∈ S(pt) starts a cascade as well, in the

sense that no future consumers buy the product again, as discussed in Section 3.2.11 Second, in

the no-commitment scenario there always exists a continuation equilibrium in which any given

m ∈ E(p(Rt)) starts a cascade. One example is the babbling equilibrium, one in which all future

reviews are uninformative and are perceived as such, and thus the public belief remains frozen

at p(Rt,m).12 However, in general, a cascade need not shut down the information transmission

completely: reviews may be informative and affect the public belief pt as long as they do not affect

future consumers’ actual purchasing decisions.

The following proposition presents the main result of this section, which motivates further

discussion. This result shows that truth-telling (fully revealing communication) is neither a welfare-

maximizing social norm, nor it is an equilibrium in a decentralized game.

Proposition 1. In the commitment regime, P(pt) = [0, 1] for all pt does not deliver a maximum

for V C(pt).

In the no-commitment regime, P(pt) = [0, 1] if and only if any message available at pt starts a

cascade.

Proposition 1 shows that the conflict between the sender and the receiver of a review precludes

perfect communication. If the sender’s (time-t consumer’s) posterior bt is just below the myopic

cutoff p̄, she generally wants the next consumer to purchase the product and generate information

about quality for the sake of future generations. The receiver (consumer at t+ 1), however, would

not buy the product if she learned that given all available information, the product is good only with

probability bt < p̄. The sender thus wants to misrepresent her posterior as if it was barely above p̄.

As we show in the following sections, in the absence of commitment this noisiness of communication

unravels – even though the sender-receiver conflict only exists for some bt < p̄ the noise propagates

to all bt > p̄.

The statement for the no-commitment regime also illustrates that the noise arises exactly from

the sender’s regard for consumers beyond time t+1. In particular, if no informative communication

is possible at t + 1 or afterwards, then time-t consumer has no reason to induce experimentation

that the consumer at t+1 is trying to avoid, because the information from these experiments would

not be conveyed to the subsequent generations either way.

In case of commitment, the reasoning behind the result is more involved. On the one hand, it

is still desirable for the sender to pool the states just below p̄ with those just above it to induce

more experimentation at t + 1. On the other hand, however, distorting communication of states

11The definition above relates to positive cascades, while m ∈ S(pt) starts a negative cascade.
12Babbling is prominent in cheap talk literature; to see that it is an equilibrium note that neither player has

a profitable deviation. The sender cannot benefit by sending informative messages because they are ignored by
the receivers regardless, and the receivers cannot benefit by following the sender’s recommendation since it is
uninformative.

9



bt > p̄ is costly, since this is not only concealing some information about the state from the future

consumers, but it may also decrease the amount of experimentation from t + 2 onwards. The

latter statement holds because pooling depresses beliefs pt+1 induced after bt > p̄, as compared to

truth-telling. However, the gains from pooling states bt ∈ (p̄− ε, p̄+ ε) are approximately equal to

V C(p̄) · ε > 0, while the losses are of order O(ε2) because V C(pt) is continuous in pt. Truth-telling

is thus not optimal under commitment either. A more detailed exposition of this logic is presented

in Subsection 5.4.

In this section we explored how equilibria cannot look. The following sections provide more

insight into how they do look, with and without commitment. We begin with exploring the most

basic version of the model.

5 Three-Period Example

This section demonstrates the main insights in the most basic three-period setting. For sake

of this example, assume that consumption utilities st are normally distributed with mean θ and

variance σ2. Suppose further that there is no discounting. We shall denote the three consumers as

C1, C2, and C3 respectively. We solve the example by backward induction.

C3 purchases the product if and only if θ(p3) = Hp3+L(1−p3) > p̄, and her messaging strategy

is irrelevant, since no consumers arrive at the market after her.

5.1 Second Period

If p2 < p̄ then, as mentioned in the model setup, the game effectively ends: C2 does not buy the

product, so writes no review, so p3 = p2 < p̄, and C3 does not buy the product either. All payoffs

starting from t = 2 are zero in this case. Conversely, if p2 > p̄ then C2’s continuation value equals

C3’s expected consumption utility: V (p3|p2, b2) = θ(p3)− c. Therefore, there is no conflict between

C2 and C3, and truthful communication, where C2 reports m2 = p2, is possible in equilibrium (in

both regimes – with and without commitment).

Note, however, that the only information relevant to C3 is whether to buy the product or not. She

cannot make use of more precise information to make better recommendations to future consumers

because there are no future consumers. Therefore, all continuation equilibria from p2 with S(p2) 6= ∅

are payoff-equivalent to the one where only two messages are used: M = {“buy”, “do not buy”}.

In this case “buy” is sent by C2 whenever b2 > p̄, and “do not buy” is sent when b2 < p̄. Then

V (p2, b2) = max{θ(b2)− c, 0}.

If S(p2) = ∅ then any message at p2 starts a cascade, so V (p2, b2) = θ(b2)− c in this case.

5.2 First Period

In this section we analyze V (p2|p1, b1), C1’s continuation value from inducing prior belief p2 for

C2, when her own private belief is b1. We again look at states p1 > p̄ (otherwise all values are zero).

For simplicity we assume that all time-2 continuation equilibria are informative, i.e., S(p2) 6= ∅
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for all p2 > p̄.13 Note that since truthtelling is both a first-best and an equilibrium outcome at

t = 2 – and any informative continuation is equivalent to truth-telling, as shown above – the value

V (p2 | p1, b1) for given p2 and b1 is the same in both commitment and no-commitment regimes.

The difference between the two only lies in what communication strategies can be optimal for C1

given V (p2|p1, b1). These strategies are explored in sections 5.3 and 5.4.

With p1 > p̄, C1 buys the good and receives utility s1. If she sends a message m ∈ S(p1) that

induces no further purchases, her continuation value equals zero. When she sends m ∈ E(p1), C2

purchases the product and obtains utility s2. Following that, C3 purchases the product if and only

if p3 = b2(s2) > p̄. Signal s̄2 which induces b2 = p̄ can be found from

b2

1− b2
≡

p2

1− p2
·
fH(s̄2)

fL(s̄2)
=

p̄

1− p̄
.

Given that fH(s̄2)
fL(s̄2)

= e
H−L

σ2 (s̄2−H+L
2 ), we have

s̄2(p2) =
σ2

H − L

[

ln

(

p̄

1− p̄

)

− ln

(

p2

1− p2

)]

+
H + L

2
. (4)

Therefore, if C2 buys the product, C1’s continuation value from inducing some belief p2 is given by

V ∗(p2 | p1, b1) = E [s2 + s3 · I{s2 > s̄2(p2)} | b1] . (5)

Given C2’s sequential rationality, C1’s continuation value is

V (p2 | p1, b1) =







V ∗(p2 | p1, b1) if p2 > p̄,

0 if p2 < p̄

From the point of view of C1, the good is of high quality with probability b1. In that case

C3 buys the good with probability 1 − FH(s̄2) and receives H − c in expectation. Similarly, with

probability 1− b1 the good is of low quality, and then C3 gets L− c conditional on purchase which

occurs with probability 1− FL(s̄2). In the end, expression (5) can be rewritten as

V ∗(p2 | p1, b1) = θ(b1)− c+ b1 ·
(

1− FH(s̄2(p2))
)

(H − c)+(1− b1) ·
(

1− FL(s̄2(p2))
)

(L− c) , (6)

where s̄2 is given by (4).

Analyzing (6), we can identify several important properties of V ∗(p2 | p1, b1). Firstly, it is

strictly positive at b1 = p̄ for all p2. This follows from the fact that FH(s̄2(p2)) < FL(s̄2(p2)). The

function is continuous in b1, hence it is also strictly positive in some neighborhood of b1 = p̄. This

implies that C1 strictly prefers to induce p2 > p̄ for at least some values of b1 < p̄: she wants C2

to purchase the product despite believing that this is not myopically optimal. This is due to the

social value of experimentation (i.e., of information generated by the purchase at t = 2), which is

internalized by C1 in her review strategy, but not by C2 in her purchasing strategy. There is thus

13The case when a cascade is started at t = 2 (after any message at t = 1) is trivial, since then truthtelling is an
equilibrium by the same argument as in the second period. The case when a cascade is started by some but not all
messages m ∈ E(p1) is non-trivial, but we do not deem it worthy of careful consideration.
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V (p2 | p1, b1)

p210 p̄

b1 = 1

5

b1 = 1

2

b1 = 1

3

b1 = 1/2

b1 = 1/3

b1 = 1/5

Figure 1: V ∗(p2 | p1, b1) as a function of p2.
Note: the parameter values are H = 3, L = 0, c = 1, σ = 4, b1 = 1

5 ,
1
3 ,

1
2 .

a conflict between the two.

Secondly, the expression in (6) is strictly increasing in p2 on [0, b1] and is strictly decreasing on

[b1, 1], i.e., it is single-peaked with a peak at p2 = b1. This means that when b1 > p̄, C1 would

prefer to tell the truth to C2 and induce the correct belief p2 = b1. To see this, observe that

∂V (p2 | p1, b1)

∂p2
= (1− b1) p̄f

L(s̄2(p2)) ·
σ2

(1− p̄)p2(1− p2)

(

b1

1− b1
·
1− p̄

p̄
·
fH(s̄2(p2))

fL(s̄2(p2))
− 1

)

.

Since fH(s̄2(p2))
fL(s̄2(p2))

is strictly decreasing in p2 from +∞ to 0, and the fraction multiplying the bracket

is positive, we get that V (p2 | p1, b1) is single-peaked. We can find the peak by equating ∂V (p2|p1,b1)
∂p2

to zero, which yields

s̄2 =
σ2

H − L

[

ln

(

p̄

1− p̄

)

− ln

(

b1

1− b1

)]

+
H + L

2
,

which together with (4) gives condition p2 = b1.

Expression in (6) as a function of p2 for different values of b1 is plotted in Figure 1. Since (6)

only coincides with V (p2|p1, b1) for p2 > p̄ (and V (p2|p1, b1) = 0 otherwise), we use dashed lines for

values p2 < p̄.

The two properties of V ∗(p2 | p1, b1) outlined above – that it is positive for b1 = p̄ − ε for at

least some ε > 0, and that it peaks at p2 = b1 – will be used heavily in the analysis that follows.

5.3 Interval Structure of Equilibrium Communication

We now show that in the no commitment regime, communication in the first period must have

interval structure. In other words, there exists a partition 0 = ∆0 6 ∆1 < ∆2 < . . . = 1 and

messages m1,m2, . . . such that if b1 ∈ (∆j−1,∆j) then rmj
(p1, b1) = 1.

First note that if S(p1) is nonempty – i.e., if there is a review that will prevent C2 from buying

the product, – this review will be used by C1 after at least some b1 low enough.14 Assume that this

14For b1 ≈ 0, expression (6) reduces to V ∗(p2 | p1, b1) = (L − c) ·
(

1 + 1− FL(s̄2(p2))
)

, which is negative because

12



is the case in what follows.

Consider now the smallest posterior belief among those available in equilibrium that leads C2

to purchase the product, e1 = min E(p1). Let ∆1 denote the level of posterior belief b1 with which

C1 is indifferent between leaving a review in S(p1) and review e1. From the fact that V ∗(p2 | p1, b1)

is positive at b1 = p̄ it is immediate that ∆1 < e1. The fact that V ∗(p2 | p1, b1) has a peak at

p2 = b1 implies, in turn, that all types b1 of C1 also prefer to leave review e1 rather than any review

p2 > e1.
15

In other words, if there exists a way to make the “most cautious recommendation to buy”, then

C1 would like to adopt that phrasing for a wide range of posteriors b1. This is because she wants

C2 to purchase the product, thus generating information, even when it is not myopically optimal

for C2 – but does not want to distort the information that C2 passes onwards. These two goals

conflict with each other, since C1 only has one stone – her review – to hit both birds.

Recall, however, that C2 is rational and Bayesian – in particular, when forming her belief

p2 she takes C1’s incentives into account. Therefore, it must be the case that the prior belief

p2 = e1 of C2 must incorporate the information contained in the posteriors b1 of the versions of

C1 who write reviews that induce e1. We have argued above that there are types b1 < e1 that

induce p2 = e1, so there must also be types b1 > e1 that do the same. Consider the supremum

of such types b1 and denote it by ∆2. C1 with posterior b1 = ∆2 must (by continuity of V ∗)

be indifferent between inducing e1 and the next-lowest available posterior e2. However, we know

that V ∗(p2 | p1, b1) is single peaked in p2 with a peak at p2 = b1, hence the indifference condition

V ∗(e1 | p1,∆2) = V ∗(e2 | p1,∆2) implies that e2 > ∆2. By iterating the argument, we get that

... < ∆j < ej < ∆j+1 < ej+1 < ...

Plainly speaking, the fact that the aforementioned “most cautious recommendation to buy” is

noisy and not perfectly revealing of b1 implies eventually that all other messages must be noisy as

well. Notably, perfect communication is thus impossible even for high posteriors b1, when there is

no conflict between the sender and the receiver.

Figure 2 plots the continuation payoff of C1 in an interval equilibrium with three messages:

e1 = p̄, e2, and “stop experimentation”. This payoff coincides with the unconstrained maximum

(when C1 can choose any p2 and force C2 to purchase the item) whenever b1 = e1, but is strictly

lower for all other posteriors. The noise in communication thus hurts C1 by making the purchasing

decision of the third consumer less efficient, but this is compensated by the more efficient purchasing

decision of C2 as compared to the case when C1 can choose any p2 but cannot force C2 to buy.

5.4 Commitment Solution

By committing to truthful communication, C1 can achieve value

V (b1 | p1, b1) =







V ∗(b1 | p1, b1) if b1 > p̄,

0 if b1 < p̄

L < c.
15This also implies that E(p1) must be closed at the bottom in any equilibrium, i.e., e1 does actually exist.
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V1

b110 p̄

e1

e2

∆1 ∆2

V ∗(b1 | p1, b1)

V D(p1, b1)

Figure 2: V ∗(b1 | p1, b1) and value V D(p1, b1) in an interval equilibrium.
Note: H = 3, L = 0, c = 1, σ = 2. To illustrate convexity, it is also assumed for this graph that C1 cares about third

consumer’s utility 9 times as much as about C2’s (one can think that 9 consumers arrive in the third period).

Our goal in this section is to demonstrate that C1 can do better than this (in expectation over b1

for a given p1). The source of improvement lies in the discontinuity of V (b1 | p1, b1) at b1 = p̄.

To evaluate the trade-offs introduced by imperfect communication of posteriors b1, it is useful

to understand how V (p2 | p1, b1) depends on the induced prior p2 for a given posterior b1. To do

this, we ask the dual question and visualize the dependence of V (p2 | p1, b1) on b1 for a given p2. In

particular, (6) is a linear function of b1, meaning that once we fix p1 and p2, value V (p2 | p1, b1) as

a function of b1 is given by a tangent to the maximal value V ∗(b1 | p1, b1) at b1 = p2. This means

that V ∗(b1 | p1, b1), as well as V (p1, b1) in any equilibrium, are convex in b1, since all of these are

upper envelopes of respective sets of linear functions.

This convexity implies that C1 cannot benefit from sending messages that pool different

posteriors b1 above p̄. On the other hand, it is also strictly optimal to stop experimentation for all

private beliefs below ¯̄p, where ¯̄p is determined from condition V (¯̄p | p1, ¯̄p) = 0. Therefore, benefits

can only arise from pooling posteriors b1 in the neighborhood of p̄, and perfect communication

is optimal for posteriors b1 above the pooling region. The benefits of pooling come from inducing

experimentation after b1 < p̄, which means that the posterior induced by pooling must exactly equal

p̄. Indeed, otherwise C1 can lower the cutoff above which perfect communication occurs, forcing C2

to buy the item for all the same b1 < p̄, and conveying better information for some b1 > p̄, which

is an improvement.

Finally, it is always optimal to pool at least some private beliefs to the left and to the right

of p̄. Indeed, suppose that a consumer sends the same message m for all private beliefs ε-below

and C · ε-above p̄ such that resulting q(pt,m) = p̄.16 This is equivalent to substituting value from

truth-telling in this interval with a line tangent to V (b1 | p1, b1) at b1 = p̄. The gains from it are

approximately equal to V (p̄ | p1, p̄) · ε > 0, because V (p̄ | p1, p̄) > 0. Losses associated with pooling

above the cutoff are less then C(H−L)
2 ε2 = O(ε2). Therefore, there always exists ε > 0 such that it

is optimal to pool at least some small neighborhood of private beliefs bt around p̄. Figure 3 plots

16As distributions µθ(bt|pt) are arbitrary the weights between two sides from p̄ do not have to be equal.
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V (b1 | p1, b1)

b110 p̄¯̄p

V ∗(b1 | p1, b1)

V C(p1, b1)

V (b1 | p1, b1)

b1p̄¯̄p

Figure 3: V ∗(b1 | p1, b1) and the commitment value V C(p1, b1).
Note: H = 3, L = 0, c = 1, σ = 2. To illustrate convexity, it is also assumed for this graph that C1 cares about third
consumer’s utility 9 times as much as about C2’s. The left panel plots functions for all b1 ∈ [0, 1]; the right panel

focuses on the neighboorhood of p̄.

the value attained by C1 under this communication mechanism. Although this argument shows

that it is always beneficial to pool private beliefs below and above p̄, it does not however show how

it is optimal to pool beliefs. As we formally show in the next chapter this region is indeed always

a convex interval around p̄.

6 General Case

This section describes the equilibrium outomes and the commitment solution arising in the

infinite-horizon version of the game. We show that neither of the two feature perfect communication,

with the exception that it may be an equilibrium outcome in some period as long as future

communication is uninformative.

6.1 Commitment Solution

We begin by looking at the commitment solution this time around. The main result and the

argument behind it mirror those that we have discovered in the three-period example: the reviewer’s

desire to inflate the review of a marginally-bad item for sake of social experimentation results in

him pooling moderately bad experiences with some good experiences so as to push the posterior of

the next consumer up to p̄. After all other experiences the reviewer reports truthfully. This idea is

formalized in Theorem 1 below.

Theorem 1. At every public state pt the optimal commitment solution is characterized by cutoffs

lC(pt) < p̄ < rC(pt) such that:

1. For all bt ∈ [0, lC(pt)] the consumer sends message m ∈ S(pt), i.e., the experimentation stops.

2. For any bt ∈ [rC(pt), 1] the consumer truthfully transmits her private belief bt (or what is the

same his private payoff) to the public, that is pt+1 = bt.

3. For all bt ∈
(

lC(pt), r
C(pt)

)

the consumer sends message m such that q(pt,m) = p̄.
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The proof of the theorem in the appendix proceeds in three main steps. First, we show that

V (bt | pt, bt) is continuously differentiable and [weakly] convex in bt above p̄. This implies that

pooling is only beneficial around the cutoff. Since V (pt, p̄) > 0, there are potential gains from

pooling posteriors bt < p̄ with posteriors above the cutoff. This, however, would at the same time

decrease the quality of information transmitted after those bt > p̄ that are pooled with posteriors

below the cutoff, which is socially costly. The second major step of the proof is thus in showing that

the gains from pooling over an arbitrarily small interval of posteriors will be of first order, while the

losses will be of second order. Finally, we show that the optimal commitment strategy exists within

the class of strategies restricted to such combinations of pooling around the cutoff and truthtelling

otherwise. This existence is proved with the help of Arzela-Ascoli Theorem. Furthermore, we show

that the optimal strategy is Markovian, i.e., depends only on public belief pt but does not explicitly

depend on t.

It is straightforward that the commitment solution induces underexperimentation relative to

the first best (in which the consumer can transmit the information perfectly while also having

perfect control over the future consumers’ actions). This is because experimentation is costly:

to provide incentives for future consumers to experiment with the product after bt < p̄, the

sender must distort the information transmitted after bt > p̄. In particular, this distortion is

downwards, meaning it makes all future consumers more pessimistic and so exacerbates the problem

of underexperimentation after those histories. In other words, the reviewer in period t has to trade

off underexperimentation at t+ 1 against underexperimentation from t+ 2 onwards.

It is also worth pointing out the differences between our model of commited sender and the

model of Che and Hörner [2018]. One obvious difference lies in the signal structure, where we allow

for a wide class of private signals compared to binary (good news Poisson) signals in their case. This

allows us to give a richer characterization of within-period outcomes at the cost of the tractability

of the dynamics in the model. However, a more substantial difference between the two models

lies in the technologies: in the model of Che and Hörner [2018] the principal is long-lived, and has

memory of old information even if it was not publicly disclosed at the time, so this information

may be disclosed at a later time. In our model, in contrast, all consumers are short-lived, hence the

public record of product reviews is the only past information available today. This constraint to a

public memory limits the principal designing a reviewing mechanism to “now-or-never” revelation

schemes, eliminating the opportunity to delay.

6.2 Decentralized Equilibrium

We now move on to exploring the equilibria of the decentralized game. The analysis is

complicated by the fact that an equilibrium at t is determined by the continuation equilibria after

various induced priors pt+1, which in turn depend on continuation equilibria after pt+2 and so on.

Backwards induction is not available in an infinite-horizon game, and even restricting ourselves to

Markov setting, where strategies only depend on the public prior p but not calendar time t, does

not render the problem tractable enough to provide a full characterization of the set of equilibria.

We are, however, able to provide a partial characterization of equilibria. In particular, Theorem 2

below provides two statements pertaining to such characterization. First, it claims that commitment

is always valuable in the sense that no equilibrium of the decentralized game can generate a higher
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lever of social welfare. Second, it shows that experiences bt in some neighborhood of the myopic

cutoff p̄ are always pooled together into a single review – this applies to any equilibrium of the

game.

Theorem 2. 1. For any equilibrium in the decentralized game, V D(pt) 6 V C(pt) for any pt.

2. For any pt for which there exists a p ∈ P(pt) that does not start a cascade, there exist lD(pt),

rD(pt) > lD(pt) and m ∈ M such that p̄ ∈ [l(pt), r(pt)], and for all bt ∈ [l(pt), r(pt)] we have

r(m | pt, bt) = 1.

The first statement is relatively straightforward, since the principal in the commitment scenario

has access to any communication structure that can arise in the equilibrium of a decentralized game.

The second statement mostly mirrors the intuition from the three-period example. The part

that is worth pointing out is the qualifier on pt: in particular, communication at pt is noisy only if

at least some message is available in M(pt) that does not start a cascade. The complementary case

was discussed in Proposition 1: if all messages in M(pt) start a cascade then perfect comunication

is possible.

7 Conclusion

This paper builds a theoretical model of social learning through product reviews, focusing on

the issue of information provision. We look closely at the empirically observed tension between

self-interest in purchasing behavior and prosocial motives when writing a review, and we investigate

how this tension affects the informational content of the reviews. The conflict emerges from the

reviewers’ desire to deceive future consumers into buying a potentially subpar product for sake of

generating information beneficial for the society.

We show that truthful communication through reviews cannot be sustained in the equilibrium

of such a model. Moreover, despite the conflict only arising under specific circumstances, the noise

created by it propagates, making all communication noisy in equilibrium. If, however, the reviewer

can commit to a particular communication strategy before experiencing the product or, equivalently,

a social norm can be chosen by a welfare-maximizing principal that all consumers will have to follow,

then the noise in communication is more confined, and perfect communication is possible when the

reviewer sees the product as very good.

This paper contributes to the broader literature on social learning, helping to identify the

issues that can deteriorate the quality of learning via product reviews, demonstrating that even

in the absence of any kind of interference from the firm, reviews may not be the perfect source of

information about products with uncertain characteristics.
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Appendix

When talking about current strategy in some public state pt we always assume that equilibrium is not

babbling in this state.

We also introduce the following notation

Gp(b) = p · µH(b | p) + (1− p) · µL(b | p).

This is a cdf of the distribution of private posterior b as perceived by the consumer with the prior given by

public belief p.
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We will also use extensively the following representation of messaging strategies.

Definition. A messaging partition Σ(pt) = {Ij} in public state pt given strategy profile r is a (possibly

uncountable) collection of sets Ij such that

1. for each Ij there exists mj ∈ M such that r(mj | pt, bt) > 0 if and only if bt ∈ Ij,

2.
∑

j:bt∈Ij

r(mj | pt, bt) = 1 for all bt ∈ [0, 1].

Strategy profile r admits representation with a partition at state pt if there exists a respective messaging

partition Σ(pt).

Definition. Consider public belief pt and a corresponding messaging partition Σ(pt) = {Ij}. Then we call

messaging partition Σ := {I ′j} a parallel shift of Σ(pt) by increment a if for any bt ∈ Ij we have

ln

(

b′t
1− b′t

)

:= ln

(

bt

1− bt

)

+ a,

and b′t ∈ I ′j. We call Σ a consistent parallel shift of Σ(pt) if

E[bt | bt ∈ Ij ] < p̄ ⇒ E[b′t | b
′

t ∈ I ′j ] < p̄.

The first result provides a more convenient representation for value function (3). It shows that any

posterior p ∈ E(pt) is fully characterized by two numbers V H(p) and V L(p).

Lemma 2. If p ∈ E(pt) then

V (p | pt, bt) = θ(bt)− c+ β
(

btV
H(p) + (1− bt)V

L(p)
)

, (7)

where

V i(p) = E





+∞
∑

j=t+2

βj−t−2 · I (pj > p̄) · sj

∣

∣

∣

∣

p, θ = i



 , i = {H,L}.

Moreover, V (p | pt, bt) is linear and strictly increasing in bt for any given p.

Proof. Because p ∈ E(pt) then the next consumer buys the product. Therefore (3) reduces to

V (p | pt, bt) = bt (H − c) + (1− bt) (L− c) + β
(

btV
H(p) + (1− bt)V

L(p)
)

,

which is (7). At the same time if θ = H then I (pj > p̄)·sj > 0 for any j, while if θ = L then I (pj > p̄)·sj 6 0.

Therefore
(

H − c+ βV H(p)
)

>
(

L− c+ βV L(p)
)

, and due to (7) V (pt, bt | p) is thus strictly increasing in

bt.

Lemma 3. Suppose that m′,m′′ ∈ M(pt) and p̄ 6 q(pt,m
′) < q(pt,m

′′). Then either V H(q(pt,m
′)) =

V H(q(pt,m
′′)) and V L(q(pt,m

′)) = V L(q(pt,m
′′)), or V H(q(pt,m

′)) < V H(q(pt,m
′′)) and V L(q(pt,m

′)) >

V L(q(pt,m
′′)).

Proof. If V H(q(pt,m
′)) < V H(q(pt,m

′′)) and V L(q(pt,m
′)) < V L(q(pt,m

′′)) then V (q(pt,m
′) | pt, bt) <

V (q(pt,m
′′) | pt, bt) and therefore m′ 6∈ M(pt), – a contradiction. Analogously, it can not be that

V H(q(pt,m
′)) > V H(q(pt,m

′′)) and V L(q(pt,m
′)) > V L(q(pt,m

′′)). Finally, if for some p′ and p′′

we have V H(p′)) > V H(p′′)) and V L(p′)) < V L(p′′)) it implies that there exists b̄ ∈ [0, 1] such that
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V (p′ | pt, bt) < V (p′′ | pt, bt) for bt ∈ [0, b̄) and V (p′ | pt, bt) > V (p′′ | pt, bt) for bt ∈ (b̄, 1]. Therefore

we must have p′′ < p′.

Corollary 4. In any equilibrium for any pt

1. V H(p) is a [weakly] increasing function of p on E(pt),

2. V L(p) is a [weakly] decreasing function of p on E(pt).

Proof. Directly follows from Lemma 3.

Lemma 5. At any public state pt there exists b̄(pt) > 0 such that

1. If r(m|pt, bt) > 0 for some bt < b̄t then q(pt,m) ∈ S(pt);

2. If r(m|pt, bt) > 0 for some bt > b̄t then q(pt,m) ∈ E(pt);

3. If public state pτ < 1 with S(pτ ) 6= ∅ occurs with strictly positive probabilities AH > 0 if θ = H and

AL ∈ [0, AH ] if θ = L from public state pt then V (pt, p̄) > 0;

4. b̄t 6 p̄ and the equality is attained if and only if any chosen p ∈ E(pt) leads to a continuation

equilibrium where experimentation never stops, i.e. to an equilibrium which is payoff-equivalent to a

babbling equilibria played from period t+ 1 onward.

Proof. If S(pt) = ∅ then we can take b̄t = 0. Therefore we hereafter assume that S(pt) 6= ∅. To prove

the first two claims assume the contrary. That is there exist b′t < b′′t , m′, m′′ such that q(pt,m
′) ∈ E(pt),

q(pt,m
′′) ∈ S(pt) and r(m′|pt, b

′

t) > 0, r(m′′|pt, b
′′

t ) > 0. Then V (pt, b
′′

t ) = 0, and V (pt, b
′

t) > 0 as S(pt) 6= ∅.

At the same time due to Lemma 2 we have

0 = V (pt, b
′′

t ) > V (q(pt,m
′) | pt, b

′′

t ) > V (q(pt,m
′) | pt, b

′

t) > 0,

which leads to a contradiction. This argument proves first two parts of the lemma.

By the first two parts it follows that if S(pτ ) 6= ∅ then b̄τ > 0. Next, note that from point of view of

consumer at pt who holds private belief bt = p̄ at every future history stage payoff is not less then zero.

Indeed, if there is no experimentation, then payoff is equal to 0, while if there is it is also equal to 0. Therefore

V (pt, p̄) > βτ−t
[

AH p̄
(

1− FH (s̄τ )
)

(H − c) +AL (1− p̄)
(

1− FL (s̄τ )
)

(L− c)
]

> 0,

where s̄τ = l−1
(

ln
(

b̄τ
1−b̄τ

)

− ln
(

pτ

1−pτ

))

, and l−1 is an inverse function to ln
[

fH(s)
fL(s)

]

.

Finally, we prove the last part. If any posterior p ∈ P(pt) induces babbling from (t+1), then the current

consumer decides whether all future consumers will buy the product or avoid it. Their expected utility from

her point of view is then 1
1−β

(θ(bt)− c) or zero in the two respective scenarios. Therefore as equilibrium is

not babbling the current consumer makes all subsequent consumers buy the product if and only if bt > p̄.

To show the reverse statement it suffices to show that V (pt, p̄) > 0. Then by continuity it would

imply b̄(pt) < p̄. If at any public state pτ which is a part of a history originating from pt we have

S(pτ ) = ∅, then this equilibrium is payoff-equivalent to a one where babbling equilibrium is played from

period t + 1 onwards. Therefore suppose there exists a public belief pτ such that S(pτ ) 6= ∅. Denote the

path of public beliefs that lead to this public belief as pτ−1, pτ−2, . . .. Without loss also take minimal τ

with such property. Consider public state pτ−1 such that E(pτ−1) = pτ . Then by part 3 there exists p̃τ

such that V (p̃τ | pτ−1, p̄) = p̄V H(p̃τ ) + (1 − p̄)V L(p̃τ ) > 0. Because S(pτ−1) = ∅ as τ was taken to be

22



minimal and by Corollary 4 and Lemma 3 we have that either p̃τ or any other public belief with the same

V H and V L is induced for all private beliefs bτ−1 6 p̄ and by belief consistency in some neighborhood

above p̄. With respect to Gpτ−1
this region has a strictly positive measure. Therefore probability AL

that private belief bτ−1 is within this region if θ = L is positive and is lower than probability AH that

private belief bτ−1 is within this region if θ = H. Therefore at pτ−2 there exists p̃τ−1 ∈ E(pτ−2) such that

V (p̃τ−1 | pτ−2, p̄) = p̄V H(p̃τ−1) + (1 − p̄)V L(p̃τ−1) > βAH p̄V H(pτ−1) + βAL(1 − p̄)V L(pτ−1) > 0. As τ

is finite going backward through the history of public states we get the result for pt which concludes the

argument.

Proofs of the Main Results

Proof of Proposition 1. For decentralized case the proof directly follows from part 4 of Lemma 5. The

proof for commitment case follows from Theorem 1.

Lemma 6. Suppose there exist 0 < l < p̄ < r < 1, ε > 0 and r(ε) > r such that

Ex∼Gp
[x | x ∈ [l, r]] = Ex∼Gp

[x | x ∈ [l − ε, r(ε)]] = p̄.

Then for any ε there exist γ, γ > 0 such that γε < r(ε)− r < γε.

Proof. Because both fL(x), fH(x) are continuously differentiable there exist δ > 0 and constants 0 < Bl <

Bh such that G′

p(x) ∈ (Bl, Bh) for all x ∈ (δ, 1 − δ). In what follows we consider this neighborhood. By

definition

(Gp (r)−Gp (l)) ·

r(ε)
ˆ

l−ε

xdGp(x) = (Gp (r(ε))−Gp (l − ε)) ·

r
ˆ

l

xdGp(x).

Rearranging terms we get
l
ˆ

l−ε

(p̄− x) dGp(x) =

r(ε)
ˆ

r

(x− p̄) dGp(x).

Using boundedness of G′

p(x) we can therefore obtain

Bl

(

p̄− l +
ε

2

)

· ε < Bh

(

r − p̄+
r(ε)− r

2

)

· (r(ε)− r) ,

Bh

(

p̄− l +
ε

2

)

· ε > Bl

(

r − p̄+
r(ε)− r

2

)

· (r(ε)− r) .

Solving these inequalities in r(ε)− r we get

2Bl

(

p̄− l + ε
2

)

√

2BlBh

(

p̄− l + ε
2

)

+B2
h (r − p̄)2 +Bh (r − p̄)

ε < r(ε)− r <
2Bh

(

p̄− l + ε
2

)

√

2BlBh

(

p̄− l + ε
2

)

+B2
l (r − p̄)2 +Bl (r − p̄)

ε.

Both the LHS and the RHS are continuous in ε and therefore attain their lowest and highest

values respectively on ε ∈ [0, 1]. Therefore we can find such constants γ and γ such that

γε < r(ε)− r < γε.

Lemma 7. Suppose f(x) is a [weakly] convex function on [p̄, 1], a, b > 0 and f(p̄) = ap̄+ b, f ′(p̄) = a. Then
f(x)
ax+b

is a [weakly] increasing function on [p̄, 1].
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Proof. Consider x < y. Then

f(y)

ay + b
−

f(x)

ax+ b
=

y − x

(ay + b)(ax+ b)

(

(ax+ b)
f(y)− f(x)

y − x
− af(x)

)

.

Because f(x) is convex we have that f(y)−f(x)
y−x

>
f(x)−f(p̄)

x−p̄
. Therefore

(ax+ b)
f(y)− f(x)

y − x
− af(x) > (ax+ b)

f(x)− f(p̄)

x− p̄
− af(x) = (ap̄+ b)

f(x)− f(p̄)

x− p̄
− af(p̄).

f(p̄) = ap̄ + b and using convexity of f(x) once again we know that f(x)−f(p̄)
x−p̄

> f ′(p̄) = a. Therefore

expression above is non-negative.

Lemma 8. There exists δ > 0 such that for any pt and any p ∈ E(pt) we have V C(p | pt, bt) < 0 for all

bt ∈ [0, δ].

Proof. Because p > p̄ at time t + 1 the next consumer certainly purchases the product and therefore by

Lemma 2 we get

V C(p | pt, bt) = θ(bt)− c+ β
(

btV
C,H(p) + (1− bt)V

C,L(p)
)

.

Because V C,H(p) 6 H−c
1−β

and V C,L(p) 6 0 we have that V C(p | pt, bt) 6 0 for all bt 6 δ := (1−β)(c−L)
H−βc−(1−β)L .

Lemma 9. Let p′t be a public state, and {p′τ}τ>t be all public beliefs that can be on path originating from

p′t. Denote their associated messaging partitions as {Σ(p′τ )}τ>t. Consider p′′t > p′t and messaging partitions

{Σ(p′′τ )}τ>t such that for every p′τ messaging partition Σ(p′′τ ) is a consistent parallel shift of the respective

Σ(p′τ ) by the increment of ln
(

p′′

t

1−p′′

t

)

− ln
(

p′

t

1−p′

t

)

. Then V θ(p′) = V θ(p′′) for θ ∈ {H,L}.

Proof. Take any history originating from p′t

Note that probability that private belief bt is lower than some threshold conditional on some public belief

pt depends only on ln
(

bt
1−bt

)

− ln
(

pt

1−pt

)

.

If one shifts all the bounds for all sets in a given partition by the same increment, then expectations over

all sets in the new partition shift by the same increment. Moreover, if the new partition is consistent with the

previous one it implies therefore that conditional on θ under Σ(p′′τ ) in any public belief p′′τ the experimentation

stops with the same probability as it does under Σ(p′τ ) in p′τ . Therefore V θ(p′) = V θ(p′′).

Proof of Theorem 1. We initially assume that at time t all consumers in the queue (current and future) can

commit to a particular message structure. Note that for every pt an optimal V C(pt) is achieved by choosing

optimal Σ(pτ ) for every pτ that can originate from pt. These partitions without loss can be assumed to be

Markovian. That is Σ(pτ ) for all pτ originating from pt should not depend on t explicitly. Indeed, suppose

there exists p and τ1 > τ2 such that pτ1 = pτ2 = p, but optimal partitions originating from pτ1 and pτ2 do not

coincide. Then if V C(pτ1) = V C(pτ2) we can prescribe either partition to p. If however V C(pτ1) < V C(pτ2)

then we can prescribe partition corresponding to pτ2 to pτ1 which then would strictly increase V C(pτ1).

Because partition for pτ1 was assumed to be optimal we get a contradiction. The case V C(pτ1) > V C(pτ2)

is analogous. Finally, in what follows we understand by Σ(pt) a collection of optimal partitions for a given

pt and all public beliefs that can be a part of a history originating from pt that deliver V C(pt) (if it exists).

We next divide the proof into several steps outlined in the text.

Step 1. Note that ex ante value when public belief is p is equal to the value a consumer with private

belief p gets when she induces public belief p. Formally, V C(p) = V C(p | x, p) for any time-t public belief

x. Indeed, public beliefs about the state coincide in these two cases and in the second case consumer’s own
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belief is also equal to p and therefore she has the same expectations about future histories as a consumer

who face public belief p.

Step 2. For any bt > p̄ at any pτ it is strictly optimal to induce experimentation. Indeed, suppose it

is not, and at such bt experimentation stops. Then we can exclude this belief from the set of private beliefs

that induce no experimentation and induce babbling continuation in bt forever after. In that case posterior

for the pooled region where the experimentation stops stays below p̄, while for bt we get strictly positive

continuation value.

Next we show that for any pt in an optimal partition Σ(pt) there exists δ > 0 such that a consumer with

private belief bt ∈ [0, δ] sends a message that stops experimentation. Lemma 8 implies that if a consumer

with private belief bt 6 δ := (1−β)(c−L)
H−βc−(1−β)L induces public belief p ∈ E(pt) then V C(p | pt, bt) < 0. Suppose

that in Σ(pt) there exists some set of points within [0, δ] that is pooled with private beliefs above p̄ and the

resulting posterior is above p̄. Denote this posterior as ppool. Then we can construct alternative Σ(pt) that

delivers at least the same value and where for all bt ∈ [0, δ] the experimentation stops.

First, cut from the pooling region private beliefs below δ that induce experimentation and substitute

continuation with no experimentation afterwards. If this set was of measure zero then we are done.17 If it

was of positive measure then we can cut the right end of this interval such that the resulting posterior stays

on the level of ppool. For all private beliefs below δ by Lemma 8 this adjustment provides an improvement.

For all private beliefs that were not cut the value stays the same as induced posterior stayed the same.

For the points that were cut from the right end we now need to prescribe continuation partitions that also

provide an improvement. We do that by inducing truthful information transmission in all such points, i.e., in

all such points a consumer with private belief bt induces pt+1 = bt. For all further public beliefs that can be

on path originating from bt we use a parallel shift of Σ(ppool) by the increment of ln
(

bt
1−bt

)

− ln
(

ppool

1−ppool

)

.

This shift is not necessarily consistent, so we can not conclude instantly that the resulting value is the same.

However, we can show that the new partitions give a weakly higher value for all such bt.

We then without loss we can pool together all messages that induce no further experimentation into one

message. Because δ does not depend on pt, the resulting posterior of this region will be uniformly separated

from p̄ for any pt.

Step 3. We show that V C(bt | pt, bt) is a continuous and strictly increasing in bt for any pt. Consider

some bt and denote as Σ(bt) the corresponding optimal partition. Then for any point b̃t in the right

neighborhood of bt consider partitions Σ̂(b̃t) that consist of shifted partitions Σ̂(bt).
18 Because the posterior

for the no experimentation region is uniformly separated from p̄, in some neighborhood of bt we can always

do that in such a way that all the posteriors on path of play that were below p̄ stay below it. Then with

Σ̂(b̃t) we have V H(b̃t) = V H(bt) and V L(b̃t) = V L(bt).

Now suppose V C(bt | pt, bt) is discontinuous at some bt > p̄. Then there exists ε > 0 such that for any

δ > 0 we can find b′t and b′′t with |b′′t − b′t| < δ such that

V C(b′′t | pt, b
′′

t )− V C(b′t | pt, b
′

t) > ε.

For any p we than can take parallel shift of partitions Σ̂(b′′t ) by the increment of ln
(

b′t
1−b′t

)

− ln
(

b′′t
1−b′′t

)

.

There also exist such δ that this shift will be consistent, which by Lemma 9 implies that V θ(b′′t ) = V θ(b′t).

17Measure here is understood in terms of conditional measure on this pooling region.
18All by the same increment of ln

(

b̃t
1−b̃t

)

− ln
(

bt
1−bt

)

.
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Because V H(p)− V L(p) 6 H − L for any p we than have that taking δ < ε
H−L

we get

V C(b′′t | pt, b
′′

t )− V C(b′t | pt, b
′

t) < (b′′t − b′t) · (V
H(p)− V L(p)) = ε,

which gives us a contradiction.

Step 4. Here we show that V C(bt | pt, bt) is a convex function of bt.

Step 5. Because V C(pt) is weakly convex so is V C(bt | pt, bt) as a function of bt. Therefore, first, one

does not pool any private beliefs bt above p̄, and, second, if one pools beliefs below and above p̄ induced

posterior should be p̄. Indeed, if one pools some private beliefs bt below and above p̄ and the resulting

posterior is strictly above p̄, then one can cut the right end of this region to lower induced public belief to

p̄. This weakly increases V C(pt) by Jensen’s inequality. Finally, the pooling region has to be convex below

p̄. For any p > p̄, in particular p̄ itself, we have

dV C(bt | pt, bt)

dbt

∣

∣

∣

∣

bt=p̄

> 0

Therefore gains from pooling private beliefs below p̄ decrease in distance from p̄. At the same time due to

convexity of V C(bt | pt, bt) in bt losses are increasing in distance from p̄. Now suppose that the set of pooled

private beliefs is not convex below p̄. Then, first, we can cut private beliefs in the left end of the pooling

region and attach the same measure of private beliefs directly to the left of the maximum pooling region

around p̄. This will weakly increase the posterior belief for the pooling region, which we can further decrease

by cutting points from the right end of it. This will again improve V C(bt | pt, bt) point-wise.

Therefore without loss we can assume that there exist 0 6 lC(pt) 6 p̄ and set IC(pt) with all it’s points

above p̄ such that

1. for all bt 6 l(pt) consumer sends message m ∈ S(pt), i.e., experimentation stops.

2. for any bt 6∈ IC(pt) consumer truthfully transmits his private belief bt (or what is the same his private

payoff) to the public, that is pt+1 = bt.

3. for all bt ∈ (l(pt), pt)
⋃

IC(pt) consumer sends message m such that q(pt,m) = p̄.

Step 5. We now show that it is always optimal to pool at least some private beliefs bt around the cutoff

for any pt if V C(p̄ | pt, p̄) > 0. In other words it has to be that l(pt) < p̄ < r(pt). From the previous step

we know that V C(p̄ | pt, p̄) > 0, therefore pooling ε ∈ (0, δ) below p̄ with some above p̄ gives a benefit of

V C(p̄ | pt, p̄) ·ε+O(ε2). At the same time because V C(b|pt, b) is continuous in b, its slope is less than H−L,

and by Lemma 6 losses associated with pooling beliefs above p̄ do not exceed Bε2 for some B > 0. Therefore

there always exists such ε > 0 that V C(p̄ | pt, p̄) ·ε+O(ε2) > Bε2, and therefore pooling at least some beliefs

around p̄ is always optimal. If V C(p̄ | pt, p̄) = 0 then it can only be the case if V C(bt | pt, bt) = θ(bt)− c for

bt > p̄. Therefore for any pt it is not optimal to pool any private beliefs around p̄, and therefore in any pt

we have that no experimentation is induced for all bt ∈ [0, p̄]. Then if Aθ = Pr(bt+1 > p̄ | theta) we have

V C(p̄ | pt, p̄) > p̄AH · (H − c) + (1− p̄)AL · (L− c) > 0,

because AH > AL. This contradicts V C(p̄ | pt, p̄) = 0. Therefore V C(p̄ | pt, p̄) > 0 and it is always optimal

to pool at least some private beliefs around p̄.

Step 6. We show that optimal V C(pt) exists for every pt. We have seen that for any pt optimal partition

can be reduced just to one scalar l(pt) (the right end r(pt) of the pooling region is then uniquely identified).
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Therefore picking a function l(p) for p ∈ [p̄, 1] we get a particular value V C
l(p)(pt). Therefore to get an optimal

value for V C(pt) we need to maximize it with respect to l(p). For any pt we have that l(pt) ∈ [0, p̄], and

therefore l(p) is uniformly bounded on p ∈ [p̄, 1]. Call the space of functions bounded from above by p̄ and

by 0 from below by B[p̄, 1] and endow it with a standard sup-norm. That is for each pair of functions l1(p)

and l2(p) define

ρ(l1, l2) := sup
p∈[p̄,1]

|l1(p)− l2(p)|.

Continuous functions defined on compact metric spaces attain their maximum values (see

Kolmogorov and Fomin [1957], chapter 2, §19). Therefore to show that V C(pt) attains its maximum on

B[p̄, 1] we need to establish that

1. V C(pt) is continuous in l(p),

2. there exists a compact subspace of B[p̄, 1].

For any ε > 0 there exists t such that βt

1−β
·max{|H − c|, |L− c|} < ε

t
.

To show the second point we use Arzela-Ascoli theorem (see Kolmogorov and Fomin [1957], chapter 2,

§17). To apply it we need to establish that optimal l(p) is within some family of equicontinuous functions.19

For that we next show that |l′(p)| < B for some B > 0. In this case it will imply that we can restrict

ourselves to a family of functions with their derivative being bounded by B, which is clearly equicontinuous.

Finally, we than take closure of this set to obtain a compact subspace.20

Step 7. Do the maximization procedure outlined in the previous step for each pt ∈ [barp, 1]. This delivers

optimal values V C(bt | pt, bt) for all bt. Then for each pt we can identify optimal l(pt) given V C(bt | pt, bt).

Then constructed l(p) delivers maximum for V (pt) for any pt.

Note that because gains from pooling are decreasing in distance from p̄ and losses associated with pooling

private beliefs from the right [weakly] increase in the distance such l(pt) is unique for any pt. We know that

l(p) is a continuous function for any V C(bt | pt, bt). By Lemma 6 r(p) is then continuous as well. Therefore

it attains it’s lowest value. Denote it as r. Consider such pt that r(pt) = r. Because all pτ > r appear on

path from this pt then

we can find l(p) defined on p ∈ [r, 1] that delivers a maximum to V (pt). All p ∈ [p̄, r) then do not appear

in any future history originating from pt = p. In such public states, and therefore for such values we can

prescribe value for l(pt) that we obtain from a static maximization problem. That finishes construction of

optimal l(p).

Finally, note that if such l(p) maximizes V C(pt) for some pt then it maximizes V C(pt) for any pt. Indeed,

if some pτ does not appear on path from pt then the claim is true automatically. If however pτ can appear

on path originating from pt then it has to be that l(p) delivers a maximum (possibly not unique) to pτ as

well, as otherwise it would contradict optimality of l(p) for pt.

This finalizes the proof of the whole claim.

Proof of Theorem 2. The first part of the Theorem follows from the fact that any decentralized solution

induces partitions of private beliefs bt for every pt. The maximal value which can be achieved for any

partitions in public state pt is delivered by V C(pt), and therefore V D(pt) 6 V C(pt).

19A family D of continuous functions on a closed interval [a, b] is called equicontinuous if for any ε > 0 there exists
δ > 0 such that for any f ∈ D and any x1, x2 ∈ [a, b] condition |x1 − x2| < δ implies |f(x1)− f(x2)| < ε.

20Note that when taking the closure all limiting functions’ values will still be within [0, p̄] and therefore all functions
within this set are valid candidates for an optimal l(p).
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The second part follows from part 4 of Lemma 5. It implies that b̄t < p̄. Therefore we can take

lD(pt) = b̄t. By belief consistency and Lemma 3 there should exist rD(pt) > p̄ and message m ∈ M such

that m is sent for all bt ∈ [lD(pt), r
D(pt)].
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