Искусственный интеллект обнаружил новые космические аномалии
Международная команда проекта SNAD, куда входит доцент факультета физики НИУ ВШЭ Матвей Корнилов, обнаружила 11 аномалий, 7 из которых — кандидаты в сверхновые. Исследования проводились на цифровых снимках северного неба за 2018 год, для поиска использовался метод ближайших соседей на основе K-мерных деревьев. Автоматизировать поиск аномалий позволили методы машинного обучения. Исследование опубликовано в журнале New Astronomy.
Большая часть астрономических открытий основана на наблюдениях и последующих расчетах. Еще в XX веке количество наблюдений было невелико, однако с вводом в строй широкопольных астрономических обзоров неба объемы получаемых данных многократно возросли. Например, Zwicky Transient Facility (ZTF) — широкопольный обзор северного неба — генерирует ∼1,4 ТБ данных за ночь наблюдений, а его каталог содержит миллиарды объектов. Обрабатывать такое количество данных вручную сложно и дорого, поэтому команда проекта SNAD, объединяющего ученых из России, Франции и США, решала задачу автоматизации этого процесса.
Чтобы больше узнать об астрономических объектах, ученые анализируют их кривые блеска — зависимости блеска объекта от времени. Сначала регистрируют вспышку на небе, затем фиксируют, как ее блеск эволюционирует: становится более ярким, ослабевает или совсем гаснет. Для исследования ученые взяли миллион кривых блеска реальных объектов из каталога Zwicky Transient Facility за 2018 год, а также составили 7 симулированных кривых блеска объектов исследуемых типов. Всего учитывалось около 40 свойств, например амплитуда яркости объекта и периодичность.
Константин Маланчев
«Мы описали свойства симуляций набором характеристик, который ожидали увидеть у реальных астрономических тел. Среди миллиона объектов мы искали сверхмощные сверхновые, сверхновые типа Iа, сверхновые II типа и события приливного разрыва, — объясняет один из авторов статьи постдок в университете Иллинойса в Урбане—Шампейне Константин Маланчев. — Такие классы объектов мы называем аномалиями. Они встречаются очень редко и их свойства малоизучены, либо это интересные объекты для более подробного исследования».
Затем данные кривых блеска реальных объектов сопоставляли с симуляциями с помощью метода K-мерных деревьев. K-мерное дерево — специальная геометрическая структура данных, которая позволяет разбить пространство на меньшие части, рассекая его гиперплоскостями, плоскостями, прямыми или точками. Разбиение используют для сужения диапазона поиска в K-мерном пространстве, где ищут объект со свойствами, максимально похожими на те, что описаны в 7 симуляциях.
В результате на каждую из 7 симуляций было найдено 15 наиболее похожих, реально существующих объектов из базы ZTF. Всего получилось 105 объектов. Их исследователи анализировали вручную и проверяли, являются ли они аномалиями. После ручной проверки подтвердились 11 аномалий, 7 из них — кандидаты в сверхновые, а еще 4 — активные ядра галактик, в которых могут происходить события приливного разрыва.
Мария Пружинская
«Это очень хороший результат, — комментирует один из авторов статьи Мария Пружинская, научный сотрудник Государственного астрономического института имени П.К. Штернберга. — Причем у нас получилось обнаружить не только уже открытые редкие объекты, но и несколько новых, которые были пропущены астрономическим сообществом. Это значит, что можно отладить существующие алгоритмы поиска, чтобы такие объекты больше не пропускать».
Исследование показало, что данный метод действительно эффективен, при этом довольно прост в реализации. Предложенная методика поиска объектов определенного типа универсальна и может быть применена для открытия не только редких типов сверхновых, но и других интересных астрономических объектов.
Матвей Корнилов
«Астрономические или астрофизические явления, которые не были обнаружены учеными ранее, тоже являются аномалиями, — поясняет доцент факультета физики НИУ ВШЭ Матвей Корнилов. — Наблюдательные проявления таких объектов должны отличаться от свойств уже известных объектов. В будущем мы планируем применять нашу методику для открытия новых классов объектов».
Вам также может быть интересно:
ИИ в образовании: как преодолеть соблазн готовых решений
Искусственный интеллект уже стал обыденностью для молодежи: как показал опрос, около 87% студентов ведущих вузов используют ИИ в процессе обучения. Большая часть из них отметила, что он помогает им экономить время, при этом они проверяют сделанную ИИ работу. Результаты исследования были представлены на конференции по анализу данных и технологиям ИИ Data Fusion. В ее работе приняли участие научный руководитель НИУ ВШЭ Ярослав Кузьминов и другие эксперты Вышки.
Большинство студентов не верят, что ИИ сможет заменить их на работе
Большинство студентов считают, что ИИ не сможет заменить их на работе в ближайшие десять лет. Низким такой риск называют 27,2% респондентов, 41,5% — крайне маловероятным. Эти оценки были получены НИУ ВШЭ в ходе опроса 4200 студентов в 2025 году. Они приводятся в докладе «Эпоха больших языковых моделей: почему они все еще не профессионалы», подготовленном научным руководителем НИУ ВШЭ Ярославом Кузьминовым и старшим преподавателем кафедры высшей математики НИУ ВШЭ Екатериной Кручинской. Доклад был представлен на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества, которая проходит с 15 по 18 апреля в НИУ ВШЭ.
Точный ИИ-оракул: какие тренды интересуют бизнес
Современные технологии ежедневно меняют мир, автоматизируя бизнес-процессы в различных отраслях. Специалисты НИУ ВШЭ представили масштабный опыт команды iFORA по реализации ИИ-проектов в интересах крупных компаний и органов власти.
Перспективы ИИ: математика машинного обучения в фокусе
Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ провел выездной воркшоп «Математика машинного обучения». Здесь собрались ведущие ученые и специалисты НИУ ВШЭ в области машинного обучения, математики и статистики. В центре внимания исследователей оказались математические аспекты, лежащие в основе современных и наиболее перспективных направлений машинного обучения. Программа воркшопа включала мини-курсы, практические работы, доклады и круглый стол, посвященный перспективам развития ИИ в России.
Внедрение искусственного интеллекта в организации: какие эффекты отмечают сотрудники
45% организаций, которые занимались внедрением ИИ в работу, заявили о повышении производительности труда в результате его использования. Об этом говорится в исследовании «Внедрение ИИ в работу организаций: чем обусловлена вариация эффектов на труд?». Исследование проведено директором Центра статистики труда и заработной платы ИСИЭЗ НИУ ВШЭ Анной Демьяновой и стажером-исследователем центра Дарьей Талакаускас. Оно было презентовано на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества (XXV ЯМНК), проходящей в НИУ ВШЭ с 15 по 18 апреля.
«Идею всегда задает человек»: что дает ИИ образованию и медиа
ИИ-технологии меняют принципы работы образования и медиаиндустрии. Большинство студентов уже в той или иной мере используют ИИ, а нейросети уже массово производят все виды контента. Возможности и вызовы эксперты обсудили на конференции «Образование и медиа в эпоху цифровых перемен», организованной Дирекцией по маркетинговым коммуникациям НИУ ВШЭ и «Яндекс Образованием».
В Вышке стартовали открытые семинары «ИИ в индустрии»
Институт искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ запустил цикл открытых семинаров. Встречи посвящены актуальным вопросам внедрения искусственного интеллекта в различные отрасли экономики. Семинары проводятся еженедельно в 18:00 в кампусе на Покровском бульваре. Для участников также предусмотрена онлайн-трансляция.
Ученые представили новый метод для работы с несбалансированными данными
Специалисты факультета компьютерных наук НИУ ВШЭ и Лаборатории искусственного интеллекта Сбера разработали геометрический метод расширения данных — Simplicial SMOTE. Тесты на разных наборах данных показали, что он значительно улучшает качество работы AI. Метод особенно полезен в ситуациях, когда редкие случаи очень важны, например в борьбе с мошенничеством или при диагностике редких болезней. Результаты исследования доступны в открытом архиве Arxiv.org и будут представлены на Международной конференции по обнаружению знаний и анализу данных (KDD) летом 2025 года в Торонто.
В Вышке рассчитали экономический эффект от внедрения технологий ИИ в России
Институт статистических исследований и экономики знаний НИУ ВШЭ оценил потенциальный экономический эффект от внедрения и использования технологий искусственного интеллекта в отраслях российской экономики до 2035 года. Эксперты также предположили, каким должен быть объем ресурсов, которые потребуются организациям для освоения данного класса технологий.
Мегасайенс, ИИ и суперкомпьютеры: Вышка расширяет сотрудничество с ОИЯИ
Специалисты по компьютерным технологиям НИУ ВШЭ и Объединенного института ядерных исследований (ОИЯИ) обсудили сотрудничество и совместные проекты на встрече в Лаборатории информационных технологий им. М.Г. Мещерякова (ЛИТ). Со стороны ВШЭ в дискуссии участвовали заведующий Лабораторией вычислительной физики МИЭМ Лев Щур и сотрудники Научно-учебной лаборатории методов анализа больших данных факультета компьютерных наук Денис Деркач и Федор Ратников.